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Abstract  

After fertilization, the genome of the totipotent embryo is transcriptionally inactive and then 

initiates bursts of transcription termed zygotic genome activation (ZGA). Despite the 

fundamental importance of initiating an embryonic transcription program for the start of life, 

the essential regulators and molecular mechanisms triggering ZGA in most organisms are 

poorly understood. One mechanism centers on pioneer factors that function in cellular 

reprogramming and differentiation.  Recent studies revealed that not only a single but multiple 

pioneer factors bind cooperatively to the genome to open chromatin, resulting in changes of 

epigenetic modifications and triggering ZGA. Here, we review recent insights into the 

functions of pioneer factors during ZGA and discuss the potential relevance to 3D chromatin 

organization during embryonic development.  
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Introduction 

Embryonic development begins with the fertilized egg that is generated by the fusion of two 

terminally differentiated germ cells, sperm and egg (oocyte). A newly formed one-cell embryo 

(zygote) is totipotent, which is the developmental potential to form all cell types including 

extra-embryonic tissues and a complete organism [1,2]. It is thought that the reprogramming 

capacity is provided by maternal products (RNA and/or protein) derived from the oocyte, since 

oocyte cytoplasm is sufficient to reprogram somatic nuclei as demonstrated by John Gurdon’s 

somatic cell nuclear transfer experiment [3]. In mammals, the embryo undergoes a series of 

cleavage divisions, progressing to 2-cell, 4-cell, 8-cell, 16-cell, morula and blastocyst stages. 

The totipotent potential gradually decreases during cleavage divisions until reaching a 

pluripotent or differentiated state (Figure 1a) [1,2].  

How reprogramming to a totipotent state is achieved is a long-standing question. The 

transition from an egg to an embryo is accompanied by degradation of maternal RNA and 

protein, post-translational regulation and epigenetic reprogramming [4,5]. In this review, we 

focus on reprogramming that is mediated by a specialized class of transcription factors called 

pioneer factors (Figure 1b). We use the term pioneer as referring to transcription factors that 

fulfill these criteria: 1) binding to their (partial) motif in closed chromatin, 2) required for local 

chromatin opening in vivo, and 3) binding to nucleosomes in vitro [6-10]. Some pioneer factors 

also bind to condensed chromosomes and are retained during mitosis as “book markers” but it 

is not clear if this extends to all pioneer factors [11]. How precisely pioneers open chromatin 

remains poorly understood but it is thought that chromatin remodelers and epigenetic regulators 

are recruited to facilitate the process.  

Pioneer factors are essential for early embryonic development and zygotic genome 

activation (ZGA) in several species. Here, we review recent studies that have provided further 

insights into ZGA regulation by pioneer factors during early embryonic development. 

 

Multiple pioneer factors are required to trigger ZGA 

The natural reprogramming that occurs after fertilization is thought to be driven by maternal 

products that act upon the transcriptionally inactive zygotic maternal and paternal genomes. 

Subsequently, transcription is activated, and control of embryonic development is handed over 

to the zygotic genome. The transition of developmental control from the oocyte to the embryo 

is known as the maternal-to-zygotic transition (MZT), which encompasses both degradation of 

maternal products and ZGA [1,2,4,5]. The latter can occur in two or more waves, starting with 



low levels of transcription during minor ZGA and later bursts of transcription called major 

ZGA (Figure 1a) [12,13].  

Current studies clarified that multiple pioneer factors are required to drive ZGA. 

Several scenarios can be considered for how pioneer factors trigger ZGA (Figure 2): 1) One 

master pioneer factor binds to its motif, 2) multiple pioneer factors, each with their own motif, 

target different loci in the genome, 3) multiple pioneer factors bind to the same motif and 

function redundantly, 4) multiple pioneer factors independently bind to their own motif on the 

same locus, and 5) multiple pioneer factors interdependently bind to their respective motifs. 

Multiple pioneer factors may function to make ZGA more robust, synchronous and protect 

against lethality from a single gene mutation. More than one transcription factor may be 

required to bind nucleosomes to promote eviction and chromatin opening, as proposed by 

Mirny [14]. Consistent with this model, recent studies from single-molecule footprinting 

suggested that transcription factor co-occupancy frequently occurs at cis-regulatory elements 

with high levels of nucleosome binding [15••,16••]. How transcription factor co-occupancy 

mechanistically leads to histone eviction from nucleosomes remains an important question. 

 

Zelda and additional pioneer factors drive ZGA in flies 

Zelda is the first identified essential activator of the zygotic genome in any organism [17]. 

Interestingly, the conservation of Zelda orthologs is limited to the Pancrustacea lineage 

including insect clade [18]. Zelda is required for transcription of hundreds genes during ZGA, 

and its absence leads to embryonic lethality [17]. It has been reported that enhancers generally 

have a strong intrinsic nucleosome barrier [15,16,19,20]. Therefore, transcription factors are 

required to overcome this nucleosome barrier to trigger ZGA. Zelda binds to cis-regulatory 

elements and establishes accessible chromatin for other factors to bind the DNA, suggesting 

that it functions as a pioneer factor in vivo [19,21,22]. Consistent with this, purified 

recombinant Zelda binds nucleosomal DNA with sequence specificity in vitro [23,24]. 

Furthermore, the establishment of some active histone modifications depends on Zelda-binding 

[25]. Thus, Zelda fulfills the defining criteria of pioneer factors. Unlike other pioneer factors, 

it does not appear to “bookmark” chromatin in mitosis [26], albeit the lack of detection on 

mitotic chromatin does not provide unequivocable evidence for its absence. The continued 

pioneer activity of Zelda is required for maintaining accessible chromatin regions [24], which 

is consistent with recent findings that continuous SWI/SNF activity regulates chromatin 



openness [27,28]. Thus, continuous pioneer and chromatin remodeling activities may be 

necessary to maintain chromatin accessibility in interphase.  

  Although Zelda is considered to be a master regulator of ZGA, it is dispensable for 

opening chromatin regions enriched for GA di-nucleotides repeats [19,22]. This finding 

indicated that other transcription factors regulate chromatin accessibility on GA di-nucleotides 

repeats. These repeats are bound by GAGA-associated factor (GAF) and Chromatin-linked 

adaptor for male-specific lethal protein (CLAMP), and both function as activators of ZGA 

[29••,30••]. GAF maintains chromatin accessibility by recruiting chromatin remodelers 

independently of Zelda [29••]. In contrast, CLAMP and Zelda interdependently regulate each 

other’s chromatin binding and function redundantly to mediate chromatin accessibility and 

ZGA [30••]. Further studies will be needed to reveal how Zelda and other transcription factors 

cooperatively trigger ZGA. 

 

Pluripotency factors control ZGA in zebrafish 

The regulators of ZGA in zebrafish are closely linked to the pluripotency gene regulatory 

network. Nanog, Pou5f3 (OCT4 homolog) and Sox19b (SoxB1 family) are required for 

triggering ZGA [31,32]. Combined loss of these factors results in a developmental arrest before 

gastrulation and a failure to activate zygotic genes [32,33••]. A recent pre-print demonstrated 

the importance for all three factors (NPS) by abrogating ZGA in a triple maternal-zygotic (MZ) 

nanog-/-;pou5f3-/-;sox19b-/- mutant [33••]. Triple mutant analysis revealed that NPS 

synergistically establish chromatin accessibility at more than half of active enhancers, and loss 

of enhancer activity is correlated with a reduction of transcription [33••]. OCT4 and SoxB1 

family members from other organisms have been shown to bind nucleosomes in vitro [34], 

demonstrating that they function as pioneer factors. Cryo-EM studies revealed that OCT4-

SOX2, SOX2 or SOX11 binding to nucleosomes locally distorts DNA [35•,36•]. The 

nucleosome-bound Sox11 further showed the rotation of the N-terminal H4 tail, which 

functions to stabilize higher-ordered chromatin structure [35•], thereby providing detailed 

insights into how pioneer factors might initiate local chromatin opening. Therefore, at least two 

of the three transcription factors function as pioneer factors for zebrafish ZGA. Remarkably, 

the restoration of Nanog in NPS mutants is sufficient to rescue chromatin opening [33••], 

indicating that Nanog may also function as a pioneer factor. Biochemical and structural 

analysis of Nanog may provide insights into cooperative chromatin opening by NPS.  



ZGA is accompanied by several epigenetic chromatin changes including the deposition 

of histone acetylation H3K27ac at active enhancers. In zebrafish, H3K27ac precedes active 

transcription during ZGA [37-39]. Both H3K27ac and H3K18ac are reduced in embryos 

lacking NPS, suggesting that these factors are required for recruiting histone acetyltransferase 

to activate transcription [33••]. Whether they do so directly or indirectly remains to be 

determined.  

 

Blackbox of mammalian ZGA regulators 

ZGA in mammals is less well understood compared to flies or zebrafish. This is possibly due 

to both the lack of evolutionary conservation of embryonic pioneer factors and the challenges 

of de novo identification using scarce material. Several transcription factors involved in ZGA 

have been reported. The Nfya subunit of the Nfy complex promotes transcription of a subset 

of ZGA genes and is required for development beyond the morula stage [40]. Nfya contributes 

to maintain accessible promoters, suggesting that it functions as a pioneer factor [41,42]. In 

vitro assays demonstrated that the Nfy complex binds and distorts nucleosomes via the DNA-

binding domain, which is structurally similar to the histone-fold domains of H2B and H2A 

[43,44]. In addition, the double homeobox proteins Dux (mice) and DUX4 (human) are 

expressed before major ZGA and activate a 2-cell-embryo-like transcription program in 

embryonic stem cells (2C-like cells) [45,46]. Dux knockout embryos display minimal effects 

on ZGA and the knockout mice are viable [47,48], which indicates that Dux is not essential for 

embryogenesis. Human DUX4 recruits histone acetyltransferase P300 through its C-terminus 

and induces local chromatin opening in human myoblast cells [49], suggesting that DUX4 may 

function as a pioneer factor. Whether it directly binds nucleosomes in vitro remains to be shown. 

How the majority of the mammalian embryonic genome is transcriptionally activated remains 

unknown.  

 

Chromatin organization during early embryonic development 

An intriguing aspect of ZGA is that it is accompanied by changes in 3D chromatin organization 

[2,50-54]. Interphase chromosomes are folded into loops and topologically associating 

domains (TADs) by a cohesin-dependent mechanism. Loop extrusion is hypothesized to 

proceed until encountering a boundary, which is generated by binding of the zinc finger 

transcription factor CTCF to its cognate motif [55-57]. The strength of a boundary is measured 



as TAD insulation. Genomes also segregate into A/B compartments, which correlate with 

active and repressive histone modifications.  

Several Hi-C analyses of embryos revealed that chromatin organization changes during 

early embryonic development [50-54,58]. Whilst loops and TADs are generated in the mouse 

zygote within hours after fertilization, TAD insulation is initially weak and becomes stronger 

at ZGA [50-52]. A similar phenomenon has been observed in most species, with the exception 

of zebrafish [59]. Interestingly, transcription is not required for chromatin reorganization at 

ZGA in flies and mice [50,51,53,54]. A notable exception are human embryos, where TAD 

establishment coincides with CTCF expression during ZGA and requires transcription [53]. 

CTCF is required but appears not to be sufficient for TAD establishment in the absence of 

transcription [53], implying that another aspect of ZGA priming might be important for 

chromatin reorganization.  

We hypothesize that pioneer factors contribute to 3D chromatin reorganization as loop 

extrusion barriers during embryonic development (Figure 3). Transcriptional reprogramming 

is linked to the dynamics of TAD boundary and A/B compartment switching [60]. Indeed, 

pioneer factors such as OCT4 and C/EBP correlate with accelerated topological remodeling 

of compartmentalization and TAD insulation during somatic cell reprogramming [61]. In plants, 

where CTCF is absent, transcription factor motifs are enriched at the boundaries of TADs [62]. 

More directly relevant to embryonic development, Zelda is required for establishing a subset 

of TADs [54]. This suggests that either opening of chromatin by Zelda provides access for 

other transcription factors or insulators (other than CTCF) to bind to chromatin or Zelda itself 

is a barrier to loop extrusion (Figure 3). In taking this concept further, we consider the 

possibility that CTCF functions as a pioneer factor in establishing boundaries and that this 

might be a general feature of bona fide pioneer factors. Further studies will be needed to test 

whether pioneer activity is important for 3D genome reorganization during ZGA.  

 

Concluding remarks 

Fertilized eggs rapidly reprogram the epigenome and 3D chromatin organization to acquire a 

totipotent state. In this review, we summarized how pioneer factors function as activators of 

zygotic genomes in different species. The key pioneer factor(s) for triggering ZGA in mammals 

remains unknown. Multiple pioneer factors function redundantly in other species, raising the 

possibility that a similar network might function in mouse and human. Extensive mapping of 

transcription factor binding sites during embryonic development will be needed to inform 



functional experiments for elucidating the molecular mechanisms underlying ZGA. A 

combination of embryology, genetics, genomics, and biochemistry will shed light on how 

pioneer factors trigger ZGA and generate a totipotent embryo. 
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Figure legends 

Figure 1 Overview of embryonic development and zygotic genome activation. (a) Embryonic 

development in mammals. In mice, zygote and two-cell embryos are considered to be totipotent, 

and this potential gradually decreases during the cleavage divisions. After fertilization, the 

clearance of maternal products is coordinated with the activation of zygotic transcription. The 

low level of transcription called minor ZGA occurs, followed by the burst of transcription 

called major ZGA. (b) Activation of transcription triggered by a pioneer factor. Transcription 

factors bind regulatory elements including promoters and enhancers, and drive gene expression. 

However, most transcription factor cannot access their motifs in closed chromatin. Pioneer 

factors scan and bind to their target sequences on nucleosomal DNA, establishing an accessible 

chromatin domain that facilitates the recruitment of additional factors, such as other 

transcription factors, histone modifiers and chromatin remodelers.  

 

Figure 2 Models for how one or more pioneer factors establish accessible chromatin domain to 

trigger ZGA. To simplify a model, we show one target nucleosome on the regulatory element. 

(a) One master pioneer factor binds to regulatory element and trigger ZGA. Master pioneer 

factor (magenta) binds to its motif (magenta region on nucleosome) and establish chromatin 

accessibility. (b) Multiple pioneer factors (pTFs) bind at different genomic loci. Both pTF1 

(magenta) and pTF2 (green) bind to their respective motif (magenta or green on nucleosome) 

to activate transcription. (c) Multiple pTFs which targets the same motif, bind the same locus 

and function redundantly. Either pTF1(magenta) or pTF2 (orange) binds to the same motif 

(magenta on nucleosome) to establish chromatin accessibility. (d) Multiple pTFs bind 

independently on regulatory element to establish chromatin accessibility. Both pTF1 (magenta) 

and pTF2 (green) bind to their respective motif (magenta or green on nucleosome) on the same 

locus and promote chromatin accessibility. (d) Multiple pTFs bind sequentially on regulatory 

element and regulate interdependently each other’s binding. In this model, either pTF1 

(magenta) or pTF2 (green) binds initially to their respective motif (magenta or green on 

nucleosome) and alter chromatin structure to allow secondary pTF binding. 

 



Figure 3 Model of 3D chromatin reorganization triggered by pioneer factor. (1) Cohesin-

mediated loop extrusion generates loops and TADs. Pioneer factors bind their target motif in 

chromatin. (2) Pioneer factors lead to nucleosome depletion to establish accessible chromatin. 

(3) Model 1: Pioneer factors generate accessible chromatin that allows insulators (e.g. CTCF) 

to bind and establish domain boundaries. Model 2: Pioneer factors are barriers to loop extrusion 

and directly establish domain boundaries.  



Manuscript Click here to access/download;Figure;Kobayashi_Fig1.jpg

https://www.editorialmanager.com/costbi/download.aspx?id=8129&guid=403767f9-7cfa-43ac-816d-1cb3b59c11da&scheme=1
https://www.editorialmanager.com/costbi/download.aspx?id=8129&guid=403767f9-7cfa-43ac-816d-1cb3b59c11da&scheme=1


Manuscript Click here to access/download;Figure;Kobayashi_Fig2.jpg

https://www.editorialmanager.com/costbi/download.aspx?id=8130&guid=d2af0940-d221-427e-9120-f435a647d1c5&scheme=1
https://www.editorialmanager.com/costbi/download.aspx?id=8130&guid=d2af0940-d221-427e-9120-f435a647d1c5&scheme=1


Manuscript Click here to access/download;Figure;Kobayashi_Fig3.jpg

https://www.editorialmanager.com/costbi/download.aspx?id=8131&guid=2a35a879-2986-4139-a349-be4947507932&scheme=1
https://www.editorialmanager.com/costbi/download.aspx?id=8131&guid=2a35a879-2986-4139-a349-be4947507932&scheme=1



